| Altitude H | Vapor pres-
sure e (In.
Hg.) | Specific humidity w (Lb. moisture per lb. dry air) | Density ratio ρ/
σ=0.0023769 | |------------|------------------------------------|--|---------------------------------| | 15,000 | .0463 | .001710 | .62868 | | 20,000 | .01978 | .000896 | .53263 | | 25,000 | .00778 | .000436 | .44806 | - (c) The performance must correspond to the propulsive thrust available under the particular ambient atmospheric conditions, the particular flight condition, and the relative humidity specified in paragraph (b) of this section. The available propulsive thrust must correspond to engine power or thrust, not exceeding the approved power or thrust less— - (1) Installation losses; and - (2) The power or equivalent thrust absorbed by the accessories and services appropriate to the particular ambient atmospheric conditions and the particular flight condition. - (d) Unless otherwise prescribed, the applicant must select the takeoff, en route, approach, and landing configurations for the airplane. - (e) The airplane configurations may vary with weight, altitude, and temperature, to the extent they are compatible with the operating procedures required by paragraph (f) of this section. - (f) Unless otherwise prescribed, in determining the accelerate-stop distances, takeoff flight paths, takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and thrust, must be made in accordance with procedures established by the applicant for operation in service. - (g) Procedures for the execution of balked landings and missed approaches associated with the conditions prescribed in §§ 25.119 and 25.121(d) must be established. - (h) The procedures established under paragraphs (f) and (g) of this section must — - (1) Be able to be consistently executed in service by crews of average skill; - (2) Use methods or devices that are safe and reliable; and - (3) Include allowance for any time delays, in the execution of the procedures, that may reasonably be expected in service. (i) The accelerate-stop and landing distances prescribed in §\$25.109 and 25.125, respectively, must be determined with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55466, Dec. 20, 1976; Amdt. 25–92, 63 FR 8318, Feb. 18, 1998] ## §25.103 Stalling speed. - (a) V_S is the calibrated stalling speed, or the minimum steady flight speed, in knots, at which the airplane is controllable, with— - (1) Zero thrust at the stalling speed, or, if the resultant thrust has no appreciable effect on the stalling speed, with engines idling and throttles closed; - (2) Propeller pitch controls (if applicable) in the position necessary for compliance with paragraph (a)(1) of this section and the airplane in other respects (such as flaps and landing gear) in the condition existing in the test in which V_S is being used; - (3) The weight used when V_S is being used as a factor to determine compliance with a required performance standard; and - (4) The most unfavorable center of gravity allowable. - (b) The stalling speed V_S is the minimum speed obtained as follows: - (1) Trim the airplane for straight flight at any speed not less than $1.2\ V_S$ or more than $1.4\ V_S$ At a speed sufficiently above the stall speed to ensure steady conditions, apply the elevator control at a rate so that the airplane speed reduction does not exceed one knot per second. - (2) Meet the flight characteristics provisions of §25.203. ## §25.105 Takeoff. - (a) The takeoff speeds described in §25.107, the accelerate-stop distance described in §25.109, the takeoff path described in §25.111, and the takeoff distance and takeoff run described in §25.113, must be determined— - (1) At each weight, altitude, and ambient temperature within the operational limits selected by the applicant; and - (2) In the selected configuration for takeoff.